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The disturbance induced in the uniform flow of a viscous, rotating liquid by an 
axial point force - D is studied under the restrictions that the Ekman number, 
E = 252v/U2, be small and that D = O( l/log E )  as E -f 0. The method of matched 
asymptotic expansions is invoked to obtain inner and outer (with reference to 
the dimensionless axial co-ordinate x refered to the length U / ( 2 Q ) )  approxima- 
tions to the solution of the Oseen equations as E -+ 0. The outer approximation, 
E -+ 0 with Ex fixed, is also an outer approximation to the solution of the 
Navier-Stokes equations. The mass flow across any transverse plane, which 
is equal to DIU for an oseenlet in a non-rotating flow, vanishes in this approx- 
imation. The corresponding inner limit yields a non-uniform, cylindrical 
flow far upstream of the force in the inviscid limit, E -+ 0, if and only if 
D cc l/(logE + const.). This cylindrical flow is a one-term, inner approximation to 
the solution of the Navier-Stokes equations and suffices to show that separation 
implies the failure of Long’s hypothesis of no upstream influence for inviscid, 
rotating flow past a finite body. A two-term inner representation of the solution 
is related t o  Stewartson’s solution of the Oseen equations for a moving source 
in an inviscid, rotating fluid. 

1. Introduction 
We consider the disturbance induced in the uniform flow of a slightly viscous, 

rotating liquid by a point force of magnitude D directed along the upstream axis. 
Let U, fz, v and p denote the translational and angular velocities of the basic 
flow and the kinematic viscosity and density of the liquid. Choosing 

L = U/(Zfz) (1.1) 

(1.2) 

as a characteristic length, we construct the Ekman number 

E = 2Qv/U2 = v/(2!2L2) = v / ( U L )  

and the perturbation amplitude 

e = D/(4rpU2L2) (1-3) 

and seek inner and outer approximations to the asymptotic solution for the 
disturbance on the hypothesis (the necessity for which is developed below) 

€ = O(l/logE) (E +- 0). (1.4) 
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The flow at sufficiently large distances from a body in a non-rotating, viscous 
liquid is governed by the Oseen equations (to which the Navier-Stokes equations 
reduce on the neglect of terms of second order in the perturbation velocity). 
The fundamental solution of the Oseen equations for a. point force is known as 
an oseenlet (Van Dyke 1964, p. 158) and exhibits a source-like behaviour except 
in a paraboloidal wake, 55 > 0 and P2 = O(vZ/U) in the cylindrical co-ordinates 
55 and P. The total mass efflux across a surface that surrounds the singular point, 
but from which the wake cross-section is excised, is Dl U ;  this efflux is balanced 
by a corresponding influx within the wake. 

The Oseen equations for the rotating flow described in the opening paragraph 
may be placed in the form 

(U.V)v+2S2x(v-S2xr)  = -p- lVp-vVxVxv+F,  V.v = 0, (1.5a)b) 

where U and S2 are directed along the x axis, v is the particle velocity, p is the 
reduced pressure (including centrifugal pressure), and F is the body force. 
Childress (1964) gives a solution of (1.5) for an oseenlet in a very viscous fluid on 
the hypothesis that E = O(1) as Urlv + co. This solution is directly relevant in 
the present context only for Er/L -+ co, but it does imply the striking result, 
vis-a-vis the non-rotating flow, that the mass flow across any transverse plane 
vanishes. We find that this result also holds for E -+ 0 with Ex fixed, where, 
here and subsequently, x and r are dimensionless cylindrical co-ordinates re- 
ferred to L. 

The outer approximation to the solution of (1.5) for the dimensionless per- 
turbation stream function has the form S$~(EX,  r ) ,  where $o = O( 1)  as E + 0 
with Ex fixed. We find that the inner expansion of qh0, E -+ 0 with x fixed, is 
of the form €(log IExl +const.)rJ,(r); accordingly, the inner limit of exists 
if and only if e = O( l/log E ) ,  as anticipated in (1.4). Proceeding on this hypothesis, 
we find that the first two terms, of O(e1og E )  and O(e),  in the inner expansion of 
s $ ~  can be matched to a two-term inner approximation, E -+ 0 with x fixed, that 
satisfies the inviscid Oseen equations, v = 0 in (1.5). The dominant component 
of this inner approximation is a non-trivial, inviscid solution if and only if 
e cc l/(log E + const.), in which instance it is cylindrical (independent of 2) and 
yields the upstream velocity 

V ~ N  U { l - ~ J o ( r ) , 0 , 4 r - ~ ~ l ( r ) }  [ E + ~ , x +  - c0,~=0(1)], (1.6) 

where {-, -, -} comprises axial, radial, and azimuthal components. The sub- 
dominant component of the inner approximation comprises Stewartson’s (1  968 a )  
solution for a source in an inviscid, rotating flow and (at least partially) resolves 
the difficulties posed by singularities in that solution. 

The outer approximation, qb0(Ex,r), to the solution of (1.5) under the 
hypothesis (1.4) is also an outer approximation to the solution of the full Navier- 
Stokes equations, which differ from (1.5) by terms of O(e2).  Including these 
second-order terms in the construction of a two-term outer expansion of 
qk0(Ex, r )  yields terms of O(s210g \ E x / )  = O(e) in the two-term inner expansion 
if e oc l/(log E + const.), in consequence of which only the dominant (cylindrical) 
term of the inner approximation to the solution of the Oseen equations may be 
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regarded as an inner approximation to the asymptotic solution of the Navier- 
Stokes equations. This fundamental difficulty (escalation of logarithmic terms) 
in the method of matched asymptotic expansions, which appears already in the 
prototype problem of low Reynolds-number flow past a circle (Van Dyke 1964, 
§§ 8.7, 10.5) and is rather fully explored by Fraenkel (1969), appears to limit 
the quantitative significance of the Oseen approximation. (On the other hand, 
Stewartson (19683) gives empirical arguments in support of the Oseen approxima- 
tion and suggests that it should yield qualitatively valid predictions outside 
of viscous shear layers.) 

This study was originally undertaken in connexion with the question of up- 
stream influence in an axisymmetric, inviscid, rotating flow past a prescribed 
stream surface, say S. The assumption that such a flow is unseparated yields the 
upstream velocity (Miles 1969). 

vi N ~ { l + l i ; ~ - ~ J ~ ( r ) , O , ~ r + F ~ x - ~ J ~ ( r ) }  [E- t  O , X +  - 00,r = 0(1)], (1.7) 

where Fl is the (dimensionless) dipole moment of S. This result depends essentially 
on the hypothesis that the fluid particles at  every point on S originate on the 
upstream axis (Miles 1970); accordingly, it  does not hold for separated flow, in 
which particles that originate on the upstream axis leave S at a separation ring 
and proceed downstream along a stream surface that forms the outer boundary 
of a wake. The theoretical determination of this wake boundary in the neighbour- 
hood of S poses a problem that is likely to prove even more intractable than its 
counterpart for non-rotating flows; however, the model of an oseenlet does yield 
a valid description of the separated flow in the far field and does imply that 
Long’s ( 1953) hypothesis, of no upstream influence for axisymmetric, inviscid, 
rotating flow past a prescribed body, fails for separated flow in the sense that 
the upstream flow described by (1.6) in the ordered limit E -+ 0 and x -+ - co is 
not uniform.? This conclusion, which contrasts with the opposite conclusion 
implied by (1.7) for unseparated flow, is in agreement with that advanced by 
Stewartson (1968c), who suggests that “the unsatisfactory properties of (his) 
elementary source solution.. .suppl[y] further evidence that if [a] body [in an 
unbounded, rotating flow] is experiencing drag.. .an upstream wake will occur for 
all [a/L] > 0 where a is a characteristic diameter of the body.” (It is not clear 
from this statement whether Stewartson’s ‘drag ’ includes wave drag, which, in 
contrast to  viscous drag, depends essentially on the non-linear terms in the 
equations of motion and therefore cannot be properly described by the Oseen 
approximation. ) 

We emphasize that the limiting flow (1.6) is primarily of theoretical interest 
in connexion with the formal question of upstream influence in an inviscid flow; 
it is quite unlikely to be of quantitative significance for the parametric regimes 
that can be realized in laboratory configurations. Indeed, the comparison (Miles 
1969) of the inviscid approximation (1.7) for the axial velocity upstream of an 
ellipsoid with Maxworthy’s (1970) measured values upstream of the approxi- 

t It may be of some interest to observe that choosing ‘??l = 1 in (1.G) yields a cylindrical 
flow that is brought t o  rest on the axis, thereby resembling a Taylor column. 

14 F L M  42 
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mately ellipsoidal, forward wake of a sphere suggests that there exists a significant 
domain in which the inviscid calculation on the hypothesis of a closed stream 
surface provides quantitatively significant results. 

2. Equations of motion 

velocity, and vorticity vectors in the forms 
We choose L and U as scales of length and velocity and pose the position, 

r = L{x, r ,  0}  = L(l? cos 0,  R sin 8,0}, 

v = up, 0, Sr} + ur-l{$r, - $x, r}, 
(2 .1 )  

( 2 . 2 )  

and 0 = 2 ~ { 1 , 0 , 0 } + 2 ~ r - l { y , ,  - y , , x }  = v x v ,  (2.3) 

where the triad {-, -, -} comprises the axial, radial, and azimuthal components 
of a vector, subscripts imply partial differentiation, $ is a perturbation stream 
function, y is the azimuthal circulation relative to the basic flow, and x/r  is 
the azimuthal vorticity. We also introduce the column matrix (9 is not a vector 
in the polar co-ordinate space) 

44x9 r )  = ( $ 9  Y, x>. 

pF = -{D,  0, O } ~ ( L X ) S ( L ~ ) / ( ~ ~ T L T ) ,  

( 2 . 4 )  

Substituting (2.1)-(2.3) into (1.5a), choosing 

(2.5) 

where 6 is Dirac’s delta function, eliminating the pressure, and invoking (1 .2)  

( 2 . 6 ~ )  
and (1,3), we obtain 

(2.6b) 

and ~9~ = x x  - yx - 2era,r-1~(4 q r ) ,  ( 2 . 6 ~ )  

A$ = - X ,  

E97 = Y x  - $u 

where 9$ = (2; + ra,r-la,.) $ (2.7) 

and az$ = $x = (a$/ax). (2.8) 

We remark that ( 2 . 6 ~ )  is an exact, kinematical indentity, whereas (2.6b) and 
( 2 . 6 ~ )  differ from the exact results deduced from the Navier-Stokes equations 
(cf. Goldstein 1938, p. 115) by the omission from their right-hand sides of the 
second-order terms 

(2.9a) 

and x = r-la(x, $Mx, r )  + 2 r - 2 ( x $ x - y y x ) >  (2 .9b )  
respectively. 

We seek the solution of (2.6) for $ ( x ,  r )  subject to the boundary conditions 

r = r - w ,  w a ( x ,  T )  

+(z, 0) = 0 (z $: 0) ( 2 . 1 0 ~ )  

and +(z, r )  -+ 0 (R + a), (2 .10b)  

which follow from the requirements that the velocity, vorticity, and perturba- 
tion in the total linear and angular momenta of the fluid be bounded. 
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3. Outer approximation 

tion of the form 
We proceed on the hypothesis that (2.6) and (2.10) admit an outer approxima- 

+(O) N e[+o(&r)+o(l)], 6 E Ex = O(l) ,  Er = o(l) ,  (3.1) 

where, here and subsequently, the asymptotic approximations and associated 
order symbols refer to the limit E + 0 (or, more precisely, E J. 0). We also may 
regard (3.1) as an outer solution of the Navier-Stokes equations by virtue of 
(1.4) and the fact that; I? and X, as given by (2.9), are O(e8). 

Introducing the change of variable [ = Ex in (2.6) and letting E -+ 0, we obtain 

go$ = -2,  902' = Y ~ - $ ~ J   OX = Xg-Y~-2€ra,r-'d*(6)6(r), (3.2a,b,c) 

where go = r8,r-18r. (3-3) 

Solving (3.2) and (2.10) with the aid of Fourier and Hankel transformations 
with respect to x and r ,  respectively, and placing the result in the form (3.1), we 
obtain 

We infer from (3.4) that $o -+ 0 for r -+ 0 or r + a3 (introduce the change of 
variable t = pr and let r -+ a), in consequence of which the net mass flux across 
any transverse plane ( x  = const.) vanishes for x = O(I/E) . t  This paradox, vis- 
a-vis the result for non-rotating flow, in which the mass flux across any transverse 
plane is equal to Dj U ,  reflects the decisive role of the Coriolis force for x = O( l / E ) ,  
a regime that has no counterpart in a non-rotating flow. 

We obtain the dominant terms in the inner expansion of q0, E -+ 0 with x 
fixed, by separating out the singular components of the integrands at  p = 1, 
introducing the change of variable t = 1 /( 1 - p)  in these components, and then 
letting f l -+  0. Letting + 0 in (3.4b), we obtain 

+)o([ < O) '(log 161 + ') rJ1(r) + $(r)  (6 f O)J  (3.5) 

where I f (1,1,1), C is Euler's constant, 

(3.6) 
s: L- I 0, -JO(r)+r-l ~ , ( t ) d t , ~ r - l ~ , ( r ) - 2 ~ , ( r ) + r - l  Jo(t)dt , 

t Strictly speaking, the outer approximation is valid only for T = o ( l / E ) ,  and the mass 
flux outside of this domain should be estimated separately. A heuristic estimate, based 
on the asymptotic behaviour of $,, as r + co, implies that the mass flux across 2 = const., 
r > rl is O @ ) .  

14-2 



212 J .  W.  Niles 

and (3.7a) 

= & " 2 ( $ - g y +  ...). (3.7b) 

We find it expedient, in determining the inner expansion of $o for 6 J. 0, to 
rewrite ( 3 . 4 ~ ~ )  in the form 

$ 0  = $0(6 < 0) + Z(0 +(6, 

4467 r )  = ++K r )  + +-(& r ) ,  

(3.8) 

where $o(6 < 0) is given by (3.4b), Z(6) is Heaviside's step function, 

(3.9a) 

and +&,r) = -rIOm{P, iP27,3)(Pt- 1)-lexp(-P3/Pk ll-l[)J1(pr)dP. (3.9b) 

The inner expansion of + as 6 J. 0 is complicated by the existence of a viscous 
wake for r2 = O((),[ > 0, just as in the corresponding problem for a non-rotating 
fluid. Introducing the wake co-ordinate (which is independent of 0) 

y = $(Ex)-42 = $U(vZ)-lP 

and letting 5 J. 0, we obtain (see appendix for details) 

(3.10) 

+(g, r )  N I[( 1 - 5%) mY1(r) + 2( 1 - 36- &r2) e-5 + &r2El(<) + 0 ( 6 2 ) ]  

+2Ce-C(0,1+0(g), -P+ 1++5+0(5)) (5.10) (3.11a) 

nIrY1(4 (t J. 0, c + a) (3.11 b) 

N I[ - 26+ p( - 6-1+log(+ c+ $)I + 2y{o, 1, -<-I+ 1) 

is the exponential integral. 

pansions [comprising terms of O(e)  and O(e1og E)] 
Substituting (3.5) and (3.11b7 c )  into (3.8) we obtain the two-term inner ex- 

+(o) - e(I[(log l ~ x l +  C) rJl(r) + n - ~ ( x )  ry1(r)l + &r) )  +o(c) 

[x = o(l), %(x) (EX)& < r < E-l] (3.13) 
for points outside of the wake and 

tp N s(Ir2[ - $(Ex)-l+log (Ex) + c + $1 + 2(Ex)-42{0, 1, - (Ex)-1+ 1)) 

+ o ( E )  [z = 0(1), r2  < Ex] (3.14) 

We infer from (3.13) that the inner limit of $(O) exists if and only if 
for points near the axis of the wake. 

e = O( l/log E ) ;  it  differs from zero if and only if 

€ = - @(log E + A)-l ,  (3.15) 

where @ and A are constants (@ > 0 implies E > 0 as E + 0). Invoking (3.15) 
in (3.13)' we obtain the inner limit 

$(O) N - I%rJl(r) + O(l/logE) [X = 0(1), 0 < r = 0(1)]. (3.16) 
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The approximations (3.13) and (3.14) suggest the existence of axial stagnation 
points within the inner domain of the outer approximation. The corresponding 
approximations to the perturbation velocity on the axis are 

(3.17 a )  

N €(log lExl +C+$)+o(e) (1 < -x < E l ) ,  (3.17b) 

N €[- (Ex)-~+2(1ogEx+C+#)]+o(s) ( 3.17 c) 

uo = [r- 1 $v (0 )  lr=o 

(1 < x < E-1). 

Setting x = xo < 0 and uo = - 1 in (3.17b), we obtain 

xo = -E-1 exp ( - 8-l- C - 3 )  2 (3.18) 

for the upstream stagnation point. This is within the assumed domain, Elxo[ < 1, 
if and only if (within the restriction e = O(l/logE)) e is given by (3.15). The 
downstream stagnation point implied by ( 3 . 1 7 ~ )  is within the assumed domain 
for all B = o( 1); it tends to infinity as E -+ 0 if and only if E/G = o( 1) .  

4. Inner approximation 

two-term outer representation (3.13) on the hypothesis that E = O(l/logE). 
We seek that inner solution of (2.6) and (2.10), say +ci), which matches the 

Letting E -+ 0 in (2.6), we obtain 

9 $ + x = O  and $,=y,=x, (R+O) (4.1a, b )  

with a relative error of O(E). Excluding the wake, r2 = O(Ex) and x > 0,  from the 
inner domain and invoking the known results for the corresponding solution 
in a non-rotating fluid, we infer that +(+) must exhibit a source-like behaviour 
in the neighbourhood of the singular point, R = 0, and must yield a total mass 
flux of D / U ,  or 477 in dimensionless terms, through any closed surface that in- 
cludes R = 0. Choosing $ = 0 on the upstream axis, we infer from this mass- 

(4.2) 
flux requirement that 

Guided by the form of (3.13) and the fact that both IrJl(r) and $ ( r )  are solutions 
of (4.1), we pose the solution of (4.1) and (4.2) in the form 

$("(x:, 0) = - Z€%(X) .  

+(i) @(logE) rJ,(r) +$Ax, r)l+ 81.)) + o(@, (4.3) 

where qhs satisfies (4.2) and (for R $. 0) 

B$+$ = 0. (4.4) 

Letting E -+ 0 in (4.3) with Ex: and r fixed and invoking the requirement that 
+(i) match the inner representation (3.13), we obtain the matching requirement 

$Ax, r )  (log 1x1 + Q) rJ,(r) + T = w 4  rY1(r) (1x1 +a)). (4.5) 

(It suffices, and is perhaps a more obvious procedure, to invoke this requirement 
as x i - co, after which its satisfaction for x -+ co follows implicitly from the 
subsequent, asymptotic representation of $s.) 

Stewartson (1968a) obtains a source-like solution of (4.4) by integrating 
Praenkel's (1956) dipole solution, say $ ~ ~ ( x , r ) ,  with respect to x and then 
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determining the concomitant, arbitrary function of r by considering Fraenkel’s 
solution for a source in a cylindrical pipe of radius b in the limit b -+ 00. This 
limit contains a term of the form f(b)rJl(r), where f(b) has an infinite, discrete 
set of poles, corresponding to the discrete modes of the pipe, and, in addition, 
a logarithmic singularity at  b = 00; however, as Stewartson (1968b) observes, 
this difficulty may be circumvented by adding an appropriate multiple of the 
eigensolution rJl(r),  Determining the coefficient of this eigensolution through the 
invocation of (4.5), we obtain 

+s(x, r )  = nYi(z) rYl(r) + [C + log Ix I - Ci( 1x1 ) + 2-l sin x - x - ~  (1 - cos x)] rJl(r) 

- sgn x ra, /: ( t 2  - r21-a cos t dt - r [J , (P~) - / 3 ~ ~ ( r ) l  cos [x(1- /P)+I 

Ci(lx1) = C+log 1x1 - (1-c0st)t- ldt  (4.7) 

x (1 -/P)-1/?2dp, (4.6) 
/ol 

1: where 

is the cosine integral. This representation differs from %,kl, where is the source 
solution given by equation (14) in Stewartson’s (1968a) paper, by a multiple 
of rJl(r), the coefficient of which in (4.6) has been determined by (4.5). We also 
note the following approximations to $9:  

+&, Y) - n S ( x )  rYl(r) + [C +log 1x1 + O ( X - ~ ) ]  rJ,(r) 

+ 2 8 ( x ) ( ~ R ) - ~ r ~ c o s R + O ( R - l )  (R-+co, lO-+nI > 0), (4.8) 

in which the term in cos R represents the lee-wave field of the source; 

+&, r )  = - 22(x) + r 2 S ( x )  [C - + + log +r - Ci( z )  + x-l sin z + 2 - 2  cos x ]  

+ +rye + log 1x1 - 2-21 + o(r4) ( r  -+ 0 1 ,  (4.9) 

which exhibits the logarithmic singularity in +s as r + 0; 

+&r) = -(1+cosO)+&r2[C+log~(R-x)]+O(R4) (R+ 0), (4.10) 

in which the first term represents the solution for a source in potential flow. 
Stewartson (19686) includes an inviscid source solution of the form 

Jri(2’ r )  = I[$&, r )  +CorJ,(r)l+ k), (4.11) 

where C,, is independent of E,  as one component of his solution for rotating flow 
past a sphere. This solution cannot be matched to the outer representation (3.13)’ 
even within the context of the Oseen approximation, without violating the 
restriction E = O(l/log E ) .  It is, of course, possible that (4.11) could be replaced 
by (4.3) in Stewartson’s formulation with only minor modifications of his end 
results. In  any event, the present interpretation of +*, as a component of the 
inner representation (4.3) of the solution of the Oseen equations for an oseenlet, 
resolves the difficulties posed by the singularities in for either 1x1 -+ 00 or 
r + 0 with x > 0. We also note that Stewartson’s solution for flow past a sphere 
of radius La, a Q 1, yields an axial velocity of U = 0.132a2 on r = 0 as 1x1 + 00. 

This prediction of an accelerated axial flow contrasts with the decelerated flow 
implied by ( 3 . 1 7 ~ ) .  
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(Professor Stewartson (private communication) has emphasized that the 
logarithmic singularity in @s as 1x1 + 00 is a consequence of the limit b -+ co. 
He also suggests that the joint limit E -+ 0, b -+ co may not be uniform and that 
"the difficulty associated with D = O(l/logE) may well disappear if the more 
general and more realistic problem (of a tube of finite radius) is discussed.") 

We conclude by remarking that the one-term inner approximation obtained 
by invoking (3.15) in (4.3)) 

+(;) - - I@rJl(r) + O( l/log E ) ,  (4.12) 

is identical with the inner limit of (3.16), is a cylindrical-wave solution of (4.4)) 
and yields the upstream velocity of (1.6). 

5. Flow at infinity 
co 

in (3.4 a, b ) ,  in which limit the integrals are dominated by the contributions from 
the neighbourhood of P = 0. We place the result in the form 

We obtain the limiting solution as 1x1 -+ co with E fixed by letting ( + 

+(O) - - 4 " ) ( C , q )  (161 -+ W), (5.1) 

where 7) = 1'q-b = (ZSz /V)+Z:-+i ,  (5 .2 )  

Z and i are the dimensional co-ordinates (2 e Lx and i = Lr), and 

(5.3a) 

The similarity solution +im) is equivalent to that obtained by Childress (1964) 
in his study of slow motion of a sphere in the Stokes limit for a rotating, viscous 
fluid, a/E + 0, where La is the radius of the sphere. It is a member of the set 
of similarity solutions, 

each of which satisfies (3.2) as 161 -+ co and represents a balance between viscous 
and Coriolis forces. The mass flux across a transverse plane (x = const.) associated 
with +La) is 2npUL2 for n = 0 and zero for n > 0 (it is infinite for n < 0).  The axial 
component of the perturbation velocity implied by is 

( 5 . 6 b )  

N $Z*($q)*"+l)exp [ - (2q3/27)1]cos [(2q3/27)* + &(n- l)a] (q- fco) ,  ( 5 . 6 ~ )  
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and (5 .6b)  and ( 5 . 6 ~ )  follow from ( 5 . 6 ~ )  through, respectively, a power-series 
expansion of the integrand and a saddle-point approximation. 

The radial profile 34?1(7) is compared with the radial profile, Jo(r), of (1.6) 
and (1.7) in figure 1. Observations of the radial profiles of u at  different axial 
stations, both upstream and downstream of a given body, could provide definitive 
information on the parametric domains of the limiting solutions considered here. 

6 

4 

P 

h 

2 

0 
- 0.4 0 1 .o 

J w  3?91 
FIGURE 1. The function 3?9,(7) of (5.5) and (5.6) compared with Jo(r) .  

This work was initially undertaken at  La Jolla, where it was partially sup- 
ported by a Grant from the National Science Foundation and by Contract 
Norn-2216(29) with the Office of Naval Research. It was completed at the Uni- 
versity of Cambridge, where it was partially supported by the John Simon 
Guggenheim Memorial Foundation and by the United States-United Kingdom 
Educational Commission (under the Fulbright Program). I am indebted to G. K. 
Batchelor, T. B. Benjamin, F. P. Bretherton, L. E. Fraenkel and K. Stewartson 
for stimulating discussions. 

Appendix. Asymptotic evaluation of 9 as 5.10 

We require the asymptotic evaluation of +(<, n), given by (3.9), as 6 J. 0. The 
exponentials in (3.9b) are significant as 54 0 only for pZ5 = 0(1) and may be 
approximated by 

exp ( - p 3 p  11-lC) - exp ( -p25) [I P5- 5 +  &PZ6 TPP+ O(tZ) ]  

[PY = O ( l ) ,  5.1 01. (A 1) 

(A 2) 

Substituting (A 1) and the identity 

(1, Tp,p"(p+ 1)-1 = I(P+ 1)-1+{0, T L p T  1} 

into (3.9b) and combining the results in (3.9a), we obtain 
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we obtain q51(& r )  = q5J(0, r )  + &r2 es-tr-2exp ( - -r i 2r-1)dr 

= q51(0,r)+2(1 -5 )e -c+*r2El (C)+0( (2 ) ,  (A 8 b )  

where El(<)  is the exponential integral (3.12).  Setting ( = 0 in (A 4) we obtain 

= -7rra,Yo(r) = 7rrY1(r). (A 9 )  

Substituting (A 8) and (A 9) into (A 6) and carrying out the differentiations with 
respect to 5, we obtain 

+ N I[( 1 - 25) 7r~Y~(r)  + +r2E1(<) + 2( 1 - 3( - 4 ~ 2 )  e-5 + 0 ( 5 2 ) ]  

+ 2{0,1+ 0(5), - CPJ + 1 + +6+ O(5)) ce-5. (A 10) 
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